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Abstract
We study the magnetic susceptibility of the 1D quantum XY model, and show
that when the temperature approaches zero, the magnetic susceptibility exhibits
finite-temperature scaling behavior. The scaling behavior of the magnetic
susceptibility in the 1D quantum XY model, due to the quantum-classical
mapping, can easily be experimentally tested. Furthermore, the universality in
the critical properties of the magnetic susceptibility in the quantum XY model
is verified. Our study also reveals the close relation between the magnetic
susceptibility and the geometric phase in some spin systems, where the quantum
phase transitions are driven by an external magnetic field.

PACS numbers: 75.10.Jm, 64.70.Tg, 75.40.Cx, 03.65.Vf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum phase transitions (QPTs), which occur at absolute zero and are driven by zero-
point quantum fluctuations, are one of the most fascinating aspects of many-body systems.
QPTs and related quantum critical phenomena have been a topic of tremendous interest in
condensed matter physics and have been extensively studied in the past decade [1]. In recent
work, quantum criticality has been characterized by using the methods and notions borrowed
from quantum information science, such as the concurrence [2], the entanglement entropy
[3], geometric phase (GP) [4], Loschmidt echo [5], and quantum fidelity [6], in the place of
traditional criteria, such as specific heat or magnetic susceptibility (MS). Most of these studies
focus on the zero-temperature properties of the critical systems. In recent years, the finite-
temperature properties of QPTs [7, 8], such as thermal entanglement [9], have begun to attract
more attention. This is because, firstly, all experiments are confined to finite temperature.
Thus, to experimentally verify the theoretical results, knowing only the zero-temperature
properties of the quantum system is not sufficient. Secondly, though genuine QPTs occur
only at absolute zero, quantum criticality has profound influence on system properties up to a
surprisingly high temperature [7]. Interesting phenomena at finite temperature related to QPTs
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have been experimentally observed in various systems, such as the heavy fermion system and
the BEC [10].

On the other hand, it has been shown that a QPT in d space dimensions is related to a
classical transition in d+z space dimensions [1, 11], where z is the dynamical critical exponent.
Under this quantum-classical mapping, the temperature T of the quantum system maps onto
an imaginary time direction: τ = −it/h̄ ∈ (0, 1/kBT ), where τ and t are imaginary and real
time [11]. Accordingly accessing the QPT by reducing the temperature amounts to increasing
the size of imaginary time dimension toward infinity, and leads to a divergence of the spatial
correlation length ξ . This one-to-one mapping motivates us to study the finite-temperature
properties of QPTs through its higher dimensional classical counterpart. Studies of these
QPTs and the quantum-classical mapping rely heavily on the exactly solvable models. One
of the most common examples is the one-dimensional quantum transverse Ising model (1D
TIM) [12], which exhibits a second-order QPT at the critical point λc = 1, and its classical
counterpart—the two-dimensional classical Ising model [13], which exhibits a second-order
thermal phase transitions at the Curie point.

Historically, scaling has played a central role in the study of classical criticality. It
is well known that the 2D classical Ising model obeys finite-size scaling behavior [14].
A straightforward idea is to study T �= 0 scaling laws of the 1D TIM. In [9] and [15],
the authors use the Gruneisen parameter and concurrence to characterize finite-temperature
properties induced by QPT at zero temperature. In this paper, instead we will use a classical
macroscopic thermodynamic observable—the MS—to study the finite-temperature properties
of the generalized 1D TIM—the quantum XY chain. The MS has the advantage of being
easily experimentally accessible and has been used as a witness of macroscopic quantum
entanglement [16]1. We will show how the finite-temperature scaling is manifested when
the temperature approaches zero, in analogy with finite-size scaling in the imaginary time
direction of the 2D classical Ising model. We will also verify the universality in the properties
of the MS in the quantum XY chain. Finally. we will elucidate the close relation between the
MS and another well-studied observable—the GP [4, 17–19].

2. Magnetic susceptibility of the quantum XY chain at finite temperature

The Hamiltonian of the quantum XY chain can be written as [12]

H(γ, λ) = J

N∑
i=1

[
1 + γ

2
σx

i σ x
i+1 +

1 − γ

2
σ

y

i σ
y

i+1 + λσ z
i

]
, (1)

where N is the number of spins in the chain; J is the coupling strength (for simplicity
we choose J = 1 hereafter); λ is an external magnetic field, and γ describes the
anisotropy of the system; σα

i , α = x, y, z, are the Pauli matrices on the ith site of
the chain. After a standard procedure [12], this Hamiltonian can be diagonalized as
H(γ, λ) = ∑

k 2�k

(
η
†
kηk − 1/2

)
, where ηk is the Fermionic annihilation operator of the

kth mode quasiparticle; �k =
√

(λ − cos k)2 + γ 2 sin2 k are one-half of the excitation energy
for modes k = 2π(i − 0.5)/N, i = 1, 2, . . . , N/2. The partition function of the system can
be obtained as Z = ∏

k

(
e−β�k + eβ�k

) = ∏
k 2 cosh(β�k), where β = 1/kBT is the inverse

temperature and kB is the Boltzmann constant. Accordingly, the free energy per spin of the

1 The use of thermodynamic observables to witness quantum entanglement is studied in [16]. For the XY
chain, the separable bound of the MS is given by the sum of three susceptibilities along three orthogonal axes
χx + χy + χz � N(2kBT )−1. We know that when 0 � γ � 1 and at T = 0, χx ≈ (1 − λ)−7/4, χy = 0 and
χz ≈ (γ π)−1 ln |1 − λ|. Hence, except for λ = 1, the MS cannot be explained without entanglement at T = 0. The
above result agrees with the analysis using the specific heat as an entanglement witness [16].
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Figure 1. MS χz of the 1D TIM as a function of the external magnetic field λ and temperature T.
It can be seen that the MS at zero temperature show logarithmic divergence at the QCP λc = 1.
At nonzero temperature the MS is analytical. This agrees with the known result that the 1D TIM
does not exhibit thermal phase transition at nonzero temperature.

system can be calculated as F = −kBT ln Z/N = −kBT
∑

k ln [2 cosh(β�k)] /N . In the
thermodynamic limit, N → ∞, we use an integral to replace the sum and obtain the exact
expression of the free energy per spin at temperature T [12]:

F = −kBT ln 2 − kBT × 1

π

∫ π

0
dk ln[cosh(β�k)]. (2)

The magnetization per spin along the direction of the external magnetic field λ at temperature
T can be obtained,

Mz(T ) = −∂F

∂λ
= 1

π

∫ π

0
tanh(β�k)

λ − cos k

�k

dk, (3)

and then the MS along the z-direction χz = −∂2F/∂λ2 as a function of the temperature T and
the magnetic field λ of the system can also be obtained:

χz(λ, T ) = 1

π

∫ π

0

[
β

cosh2 (β�k)

(λ − cos k)2

�2
k

+ tanh(β�k)
γ 2 sin2 k

�3
k

]
dk. (4)

We plot the MS χz of the 1D TIM (γ = 1) as a function of the external magnetic
field λ and the temperature T in figure 1. Clearly, it can be seen that the logarithmic
divergence of the MS at zero temperature indicates the second-order QPT at the QCP
λc = 1. We would like to point out that at zero temperature, the magnetization is reduced to
Mz(T = 0) = ∫ π

0 (λ − cos k)/(π�k) dk.
For the convenience of later study, we introduce another observable—the GP, which is

a fundamental concept in quantum mechanics [20]. To obtain a geometric phase, we rotate
the Hamiltonian (1) around the the z-axis at an angle φ. The effective Hamiltonian after the
rotation is

Hφ = UφHU
†
φ, Uφ =

N∏
j=1

eiφσz
j /2. (5)
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Figure 2. (Left) The MS for the 1D TIM (γ = 1) as a function of the controlling parameter λ.
The curve corresponds to different temperatures kBT = 0 J, 0.02 J, 0.06 J, 0.21 J, 0.5 J, and 1.01 J.
With the decrease of the temperature, the maximum gets pronounced, and (right) the pseudopoint
λm changes and tends as T 1.706 toward the QCP λc = 1.

The periodicity of the Hamiltonian in φ is π . After we rotate the Hamiltonian back to its
initial form (φ = π ), the GP of the ground state accumulated by varying the angle φ from 0
to π is given by

βg = −i
2

N

∫ π

0

(〈GS|U †
φ

) ∂

∂φ
(Uφ|GS〉) dφ, (6)

which is an extra phase in addition to the usual dynamic phase. From references [4, 17–19]
we know that the ground-state GP studied there can be expressed as

βg = π +
∫ π

0

λ − cos k

�k

dk = π + πMz(T = 0). (7)

Hence, the derivative ∂βg/∂λ of the ground-state GP over the external field is π times of the
zero-temperature MS χz = ∂Mz(T = 0)/∂λ. We can understand this relation in the following
way: the ground-state GP studied in [4, 17–19] is a function of the derivative of the ground-
state energy with respect to the external magnetic field [17–19], and at zero temperature, the
free energy is equal to the ground-state energy. Thus, at zero temperature, the GP is a function
of the magnetization.

As is well known, at zero temperature, the MS of the 1D TIM shows logarithmic singularity
at the QCP and exhibits finite-size scaling behavior in the proximity of the QPT point λc = 1.
Thus, it is not surprising that the GP exhibits singularity and finite-size scaling behavior near
the QCP [17]. Instead of studying the finite-size scaling of the GP (MS at zero temperature),
in this paper, we will study finite-temperature scaling of the quantum XY chain. We will
see that when the temperature approaches zero, in analogy with the imaginary time direction
approaching the infinity in the finite-size scaling, the MS obeys T �= 0 scaling behavior in the
proximity of the QPT.

3. Scaling of the magnetic susceptibility of the quantum XY chain

In order to further understand the relation between the 1D TIM and the 2D classical Ising
model, we investigate the finite-temperature scaling behavior of the MS by the finite-size
scaling ansatz [21]. For simplicity, we first look at the 1D TIM (γ = 1), and we will discuss
the properties of the family of γ �= 1 later. The MSs as a function of the external magnetic
field λ at different temperatures T (including zero temperature) are presented in figure 2. At
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Figure 3. (Left) The maximum value of the MS at the pseudocritical point λm of the 1D quantum
XY chain as a function of temperature T. The slope of the line is 0.317 (0.394) for γ = 1 (below)
(γ = 0.8 (above)). (Right) The MS at zero temperature diverges logarithmically in the proximity
of the QCP λc = 1. The slope of the line is 0.320 (0.401) for γ = 1 (below) (γ = 0.8 (above)).
The ratio of the two slopes (below and above) for a fixed parameter γ is equal to the critical
exponent ν. Here ν ≈ 1.009 (ν ≈ 1.017) for γ = 1 (γ = 0.8) is obtained. The numerical results
agree with the scaling ansatz and the universality of the XY model.

zero temperature the MS shows a singularity at λc = 1, but at nonzero temperature, there
is no real divergence of χz. Nevertheless, there are clear anomalies at low temperature, and
the height of which increases with the decrease of the temperature. This can be regarded
as the precursors of the QPT. What is more, the position λm of the maximum susceptibility
(pseudocritical point) [21] changes and tends as T 1.704 toward the QCP and clearly approaches
λc when T → 0 (see figure 2(b)). Meanwhile, the maximum value χz|λm

of the MS diverges
logarithmically with the decrease of the temperature:

χz|λm
≈ κ1 ln T + const. (8)

Our numerical results (see figure 3(a)) give κ1 = 0.320. On the other hand, when T = 0,
from [22] we know that the MS in the proximity of the QCP exhibits logarithmic singularity

χz ≈ κ2 ln |λ − λc| + const. (9)

Our numericals in figure 3(b) give the result κ2 ≈ 0.317, while the exact result [22] gives
κ2 = 1/π ≈ 0.3183. We would like to point out that the coefficient κ2 here is the same as
that in [17], where the author gives κ2 ≈ 0.3123 and our numerical result is closer to the
exact result κ2 = 1/π . According to the scaling ansatz in the logarithmic singularities, the
ratio |κ2/κ1| gives the critical exponent ν that governs the divergence of the correlation length
ξ ∼ |λ − λc|−ν . In our case, ν ≈ 1.009 ∼ 1 is obtained in the numerical calculation for
the 1D TIM, which agrees well with the known results about the 1D TIM [12]. Furthermore,
by proper scaling and taking into account the distance of the maximum χz from the QCP, it
is possible to make all the data for the value of F = 1 − exp

[
χz(λ) − χz|λm

]
as a function

of (λ − λm)/T for different temperatures T to collapse onto a single curve (see figure 4).
This figure contains the data for temperatures ranging from kBT = e−3J, e−4J, e−5J, e−5.5J.
These results demonstrate that the MS obeys the scaling behavior as the temperature decreases
to zero, in analogy with the lattice size approaching the infinity in the finite-size scaling
cases.

In the following, we will study the universality of the critical behavior of the MS. It is well
known that the anisotropic XY chain (γ 
 (0, 1]) belongs to the 1D TIM universality, while
the isotropic XY chain (γ = 0) belongs to the XX universality. For the 1D TIM universality,
ν = 1, while for the XX universality, ν = 1/2. We will show that the finite-temperature scaling
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Figure 4. The value of F = 1 − exp[χz(λ) − χz|λm] as a function of (λ − λm)/T for different
temperatures kBT = e−3J, e−4J, e−5J, and e−5.5J. For fixed γ (here we choose γ = 1 and
γ = 0.8), all data collapse on a single curve, which agrees with the finite-size scaling behavior.
The critical exponent ν = 1 can be obtained from this figure.

behavior of χz also manifests the universality principle—the critical properties depend only
on the dimensionality of the system and the broken symmetry in the ordered phase. To verify
the universality principle of the XY model, we consider the case for γ �= 1. The asymptotic
behavior is also described by equations (8) and (9). From figure 3 we see that for γ = 0.8
numerical simulation gives κ1 ≈ 0.394 and κ2 ≈ 0.401, while the exact result [22] should be
κ2 = (γ π)−1 ≈ 0.398. As a result, the critical exponent for γ = 0.8 is ν = |κ2/κ1| ≈ 1.017,
very close to the exact value ν = 1. Moreover, we also verify that by proper scaling, all data
for different temperatures T but a specific γ will collapse onto the same curve. The data for
γ = 0.8 are shown in figure 4.

What is more, through a similar analysis to that in [17], we can directly extract the finite-
temperature scaling behavior of the XX (γ = 0) universality class. It can be found that, at zero
temperature T = 0, for the XX universality, the magnetization can be written in the following
compact form:

Mz =
{

1 − 2
π

arccos λ (0 � λ � 1)

1 (λ > 1).
(10)

Accordingly, the critical exponent ν = 1/2 and z = 2 can be extracted from the MS
χz = √

2(1 − λ)−
1
2 , (λ → 1−) [17], which is different from the TIM universality (ν = 1 and

z = 1). When we change the anisotropy γ from 1 to 0, we find the range of the validity of
the quantum scaling ansatz in λ (equation (9)) shrinks gradually. The leading term of the MS
changes from 1

πγ
ln (1 − λ) to

√
2(1 − λ)−

1
2 . Hence, when 0 < γ � 1, the scaling belongs

to XY universality, while when γ = 0, the scaling belongs to XX universality. Finally,
we would also like to point out that our numerical result shows that the scaling behavior of
equation (8) can persist up to a temperature kBT ≈ 0.5 J. This result agrees well with that of
[7]. In addition, the crossover line in the region 0 < λ < 1 given by the MS χz is roughly
Tc ∼ |λ − λc|νz, which agrees well with the result obtained in the analysis elsewhere [9].
Hence, the boundary of the quantum critical scaling region can be confirmed by the behavior
of the MS χz.

6



J. Phys. A: Math. Theor. 42 (2009) 395002 H T Quan

4. Magnetic susceptibility and the geometric phase

As we have mentioned before, the derivative of the ground-state GP discussed in [4, 17–19]
is equal to π times of the MS, and the finite-size scaling of the GP [17] actually represents
the finite-size scaling of the MS. Based on these studies, we would like to further study
the relation between the thermal-state GP and the MS at a finite temperature. Similar to
the definition of the ground-state GP in [4, 17–19], we define the thermal-state GP in the
following way: four eigenstates of the modes (k,−k) of Hφ (see [4, 17–19]) can be expressed
as |00〉k = cos(θk/2)|0〉k|0〉−k + i ei2φ sin(θk/2)|1〉k|1〉−k , |11〉k = i e−i2φ sin(θk/2)|0〉k|0〉−k +
cos(θk/2)|1〉k|1〉−k , |01〉k = |0〉k|1〉−k , and |10〉k = |1〉k|0〉−k with the angle θk defined by
θk = arctan[−sin k/(cos k − λ)]. The GP of the thermal state at temperature T accumulated
by varying the angle φ from 0 to π is described by

βT = −2i

N

N/2∑
k=1

∑
n

∫
e−βEk

n 〈n|k
∂

∂φ
|n〉k dφ, (11)

where |n〉k = |00〉k , |01〉k , |10〉k , and |11〉k . After a straightforward calculation, we
obtain the same relation between the magnetization and the GP as that of zero temperature
βT = π +

∫ π

0 (λ − cos k)/�k tanh(β�k) dk = π [1 + Mz(T )] (3). Thus, we prove that at both
zero temperature and nonzero temperature, the GP of the quantum XY chain is a linear function
of the magnetization, and the derivative of the GP is proportional to the MS. The discussions of
the finite-temperature scaling of the MS in this paper can be alternatively regarded as the finite-
temperature scaling of the GP in the proximity of the QPT point. Finally, the close relation
between the GP and the MS is not confined to the 1D quantum XY chain. In [23] the ground-
state GP of the Dicke model and its relation to quantum criticality are studied. We would like
to point out that, similar to the discussions about the 1D XY chain, the ground-state GP of
the Dicke model is a linear function of the ground-state magnetization βg = π(1 + 〈Sx〉/N),
where 〈Sx〉/N is the magnetization Mx per spin in the Dicke model. Hence, the derivative of
ground-state GP of the Dicke model is also equal to π times of the MS. Besides the above
two examples, it can be proved that for any QPTs driven by an external magnetic field, such
as the Lipkin–Meshkov–Glick model [18] and the 1D XXZ model2, the relation between the
GP and the magnetization still holds true. The proof is given as follows. For those QPTs
driven by an external magnetic field, we apply a π -rotation along the z-axis for every spin
Uφ = ∏N

j=1 eiφσz
j /2 to obtain the GP. The GP of the ground state can be expressed as (6)

βg = −i
2

N

∫ π

0

(〈GS|U †
φ

) ⎛
⎝i

∑
j

σ z
j

2

⎞
⎠ (Uφ|GS〉) dφ

= 2π

N

∑
j

〈GS| σ z
j

2
|GS〉 = πMz(T = 0), (12)

where |GS〉 is the ground state of the Hamiltonian (1) before the rotation, and Uφ|GS〉 is the

instantaneous ground state after the rotation for an angle φ. We know that 2
N

∑
j 〈GS| σ z

j

2 |GS〉
is the definition of the GP of the ground state. Thus, we prove that the GP obtained by applying
a rotation around the z-axis to each spin, is proportional to the magnetization along the z-axis
(similarly, if we rotate along the x-axis, the GP will be proportional to the magnetization along

2 The Hamiltonian of the XXZ model is H = ∑N
i=1

[
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1 + λσz
i

]
. Here both the anisotropy

� and the external magnetic field λ can induce QPTs [24]. However, only the QPTs induced by λ can be characterized

by the GP induced by a rotation Uφ = ∏N
j=1 e−iφσz

j
/2. Because ∂F

∂�
is not proportional to the magnetization in the

z-direction Mz, and hence is not proportional to 〈σz〉.
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the x-axis). We would also like to point out that the GP in equation (12) differs from that in
equation (7) by a constant π . This is because the ground state of UφHU

†
φ has an uncertainty

of the global phase. When we choose a proper global phase, we can eliminate the difference
between equation (7) and equation (12). In addition, we can generalize the above discussions
to eigenstates other than the ground state. We find the same proportional factor between the
GP and the magnetization for all eigenstates. Thus, the relation between the GP and the
magnetization can be straightforwardly generalized to a thermal state at finite temperature.
The above XY model is a good example.

In summary, we study the finite-temperature scaling of the MS of the quantum XY chain.
All key features of the quantum criticality, such as scaling, critical exponent, the universality,
etc are presented in the MS of the XY spin chain. Although the nature of the QPT and the T �= 0
scaling is purely quantum mechanical, the classical macroscopic thermodynamic observable
MS, which can be easily accessed experimentally, can be used to witness and characterize
the quantum features of the system [16] (see footnote 1). Our studies shed light on the
mechanism of bringing quantum criticality up to a finite temperature, and open the possibility
of observing the footprint of quantum criticality experimentally. We would also like to point
out that the results obtained in this paper do not depend on the model and thermodynamic
observables used here, and can be generalized to other QPT models with the only change of
MS to a ‘controlling parameter-dependent susceptibility’. For example, in a QPT driven by the
pressure instead of the external magnetic field, the observable χp = −∂2F/∂p2 is expected
to exhibit the finite-temperature scaling behavior, and the critical exponent can be extracted
through a similar analysis. Finally, our study establishes the connection between the MS and
the GP at both zero temperature and nonzero temperature in a family of spin systems, where
the QPTs are driven by an external magnetic field.
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